Hölder Continuity and Injectivity of Optimal Maps
نویسندگان
چکیده
منابع مشابه
Continuity and Injectivity of Optimal Maps
Figalli–Kim–McCann proved in [14] the continuity and injectivity of optimal maps under the assumption (B3) of nonnegative cross-curvature. In the recent [15, 16], they extend their results to the assumption (A3w) of Trudinger-Wang [34], and they prove, moreover, the Hölder continuity of these maps. We give here an alternative and independent proof of the extension to (A3w) of the continuity and...
متن کاملHölder continuity and injectivity of optimal maps∗
Consider transportation of one distribution of mass onto another, chosen to optimize the total expected cost, where cost per unit mass transported from x to y is given by a smooth function c(x, y). If the source density f(x) is bounded away from zero and infinity in an open region U ′ ⊂ R, and the target density f−(y) is bounded away from zero and infinity on its support V ⊂ R, which is strongl...
متن کاملHölder Continuity for Optimal Multivalued Mappings
Gangbo and McCann showed that optimal transportation between hypersurfaces generally leads to multivalued optimal maps – bivalent when the target surface is strictly convex. In this paper we quantify Hölder continuity of the bivalent map optimizing average distance squared between arbitrary measures supported on Euclidean spheres.
متن کاملContinuity of optimal transport maps and convexity of injectivity domains on small deformations of S
Given a compact Riemannian manifold, we study the regularity of the optimal transport map between two probability measures with cost given by the squared Riemannian distance. Our strategy is to define a new form of the so-called Ma-Trudinger-Wang condition and to show that this condition, together with the strict convexity on the nonfocal domains, implies the continuity of the optimal transport...
متن کاملContinuity and injectivity of optimal maps for non-negatively cross-curved costs∗
Consider transportation of one distribution of mass onto another, chosen to optimize the total expected cost, where cost per unit mass transported from x to y is given by a smooth function c(x, y). If the source density f(x) is bounded away from zero and infinity in an open region U ′ ⊂ R, and the target density f−(y) is bounded away from zero and infinity on its support V ⊂ R, which is strongl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Archive for Rational Mechanics and Analysis
سال: 2013
ISSN: 0003-9527,1432-0673
DOI: 10.1007/s00205-013-0629-5